100		DEDA - CHIMMENT POLYTES			
Discipline: MECHANICAL ENGG Subject: STRENGTH OF MATERIAL	Semester:	DEPARTMENT OF MECHANICAL ENGINEERING Semester: Name of the Teaching Facult.			
	days/per week class	Name of the Teaching Faculty: Semester From date: 1/1/10 No. of Weeks:15	SARATILA SARAR		
COURSE	Studeni				

COURSE OUTCOMES

Students will develop ability towards

- Determination of stress, strain under uniaxial loading (due to static or impact load and temperature) in simple and single core composite bars.
- Determination of stress, strain and change in geometrical parameters of cylindrical and spherical shells due to pressure
- Realization of shear stress besides normal stress and computation of resultant stress in two dimensional objects.
- 4.Drawing bending moment and shear force diagram and locating points in a beam where the effect is maximum or minimum.
- 5. Determination of bending stress and torsional shear stress in simple cases
- Understanding of critical load in slender columns thus realizing combined effect of axial and bending load.

Week	Class Day	Theory/Practical Topics
1ST	1ST	Load, types of loads, stress & types of stresses
	2 ND	Strain, types of strains, hookes law, young's modulus of elasticity
	3 RD	Bulk's modulus, modulus of rigidity, poison's ratio, properties of materials
	4 TH	Stress -strain diagram for ductile & brittle materials
2 ND	1ST	Relation between elastic constants
	2 ND	Principle of superposition & related numerical
	3 RD	Ottobres in composite section
	4 TH	- the standardture etress in composite uni
3 RD	1 ST	Strain energy, resilience, stress due to gradually applied, suddenly applied & impact load.
	2 ND	Continued
	3 RD	Numericals Numericals A prossure vessels, hoop stress
	1	Numericals Pressure vessels, classification of pressure vessels, hoop stress longitudinal stress
4 TH	1ST	Derivation of hoop stress & longitudinal etrain & volumetric strain
4	2 ND	Derivation of hoop strain longitudinal strain
	3 RD	Derivation of hoop strain longitudinal strain Computation of change in length, diameter & volume
	ATH	Derivation of stress & strain
FTU	1ST	Numericals
5 TH	2 ND	Numericals

	3 RD	Stress on oblique plane, determination of normal stress, shear stress resultant stress on oblique plane subjected to direct stress in one direction
C TU	4 TH	Determination of stresses on oblique plane subjected to direct stress in two directions
6 TH	187	Determination of stresses on oblique plane subjected to direct stress shear stress
	2 ND	Continued
	3 RD	Principal stress & principal strains
	4 TH	Continued
7 TH	181	Mohr's circle
	2 ND	Mohr's circle
	3RD	Numericals
	4 TH	Numericals
8 TH	1ST	
	2 ND	Bems, types of beams & loads Concept of shear force & bending moment

	3 RD	Shear force & hending moment discuss for the	
	4 TH	Shear force & bending moment diagram for cantilever beam Continued	
9 ^{тн}	1 ST	Simply supported beam	
	2 ND	Simply supported beam	
	3 RD	Simly supported beam	
	4 TH	Simply supported beam	
10 [™]	1 ST	Overhanging beam	
	2 ND	Overhanging beam	
	3 RD	Simple bending & assumptions on the theory of simple bending	
	4 TH	Bending equation	
11 TH	1 ST	Bending equation	
	2 ND	Bending equation	
	3 RD	Moment of resistance & neutral axis	
	4 TH	Section modulus	
12 TH	1 ST	Numericals	
	2 ND	Numericals	
	3 RD	Numericals	
	4 TH	Numericals	
13 TH	1 ST	Column, axial load, eccentric load , buckling load	
	2 ND	Direct stresses, bendind stresses, maximum & minimum stress	
	3 RD	Continued	
	4 TH	Numericals	
14 TH	1 ST	Numericals	
	2 ND	Buckling load using Euler's formula for different columns	
	3 RD	Torsion, assumption of pure torsion	
	4 TH	Torsion equation	
15 TH	1 ST	Torsion equation for hollow & solid circular shaft	
	2 ND	Comparision between solid & hollow shaft subjected to pure torsion	
	3 RD	Numericals	
	4 TH	Numericals	

NING RESOURCES:

31 S Ramamrutham Strength of Materials Dhanpat Rai

02 R K Rajput Strength of Materials S.Chand

03 R.S khurmi Strength of Materials S.Chand

04 G H Ryder Strength of Materials Mc millon and co. Imtd

05 S Timoshenko and D H Young Strength of Materials TMH

Sharmela fabar Sign. Of HOD I/C

Sign. Of Faculty concerned

Principal